II Semester M.Sc. Degree Examination, June/July 2014 (RNS) (2011-12 & Onwards) MATHEMATICS M-201 : Algebra – II

Time : 3 Hours

Instructions: i) Answer any five (5) full questions choosing atleast two from each Part.

ii) All questions carry equal marks.

PART – A

- a) Define the degree of an extension K of a field F. If L is a finite extension of K and K is a finite extension of F, then prove that L is a finite extension of F. Moreover, prove that [L : F] = [L : K] [K : F].
 - b) Let K be an extension of a field F and a, b ∈ K be algebraic over F of degree m and n respectively. If m and n are relatively prime, prove that F(a, b) is of degree mn over F.
 - c) Show that $Q(\sqrt{2} + \sqrt{3})$ is an algebraic extension of Q of degree 4.
- 2. a) Prove that a polynomial of degree n over a field F can have atmost n roots in any extension field K. Is the result true when K is not a field ? Explain.
 - b) Define a splitting field of a polynomial $f(x) \in F[x]$. Prove that any two splitting fields E and E' of the polynomials $f(x) \in F[x]$ and $f'(t) \in F'[t]$, respectively are isomorphic by an isomorphism ϕ with the property that $\alpha \phi = \alpha Z = \alpha'$ for $\alpha \in F$, where $Z: F \rightarrow F'$ is an isomorphism. Hence, deduce that any two splitting fields of the same polynomial over a given field F are isomorphic by an isomorphic by element of F fixed.

8

Max. Marks : 80

6

6

4

8

-2-

3.	a)	Prove or disprove : "A regular septagon is constructible".	6
	b)	Prove that any finite extension of a field F of characteristic zero, is a simple extension.	4
	c)	If the number α satisfies an irreducible polynomial of degree k, over the field of rationals and k is not a power of 2, then show that α is not a constructible number.	6
4.	a)	If K is finite extension of F, then prove that $G(K, F)$ is a finite group and its order $o(G(K, F))$ satisfies the condition $o(G(K, F)) \leq [K : F]$.	6
	b)	Let K be a finite Galois extension of a field F and let T be an intermediate field of K and F. Prove that (i) T is a normal extension of F if and only if $G(K, T)$ is a normal subgroup of $G(K, F)$. (ii) When T is a normal extension of F, then $G(T, F)$ is isomorphic to $G(K, F)/G(K, T)$.	10
		PART-B	
5.	a)	If V is an n-dimensional vector space over F, then show that for a given T in A(V) there exists a non-trivial polynomial $q(x) \in F[x]$ of degree at most n^2 , such that $q(T) = 0$.	6
	b)	If V is a finite dimensional vector space over F and if $T \in A(V)$ is right invertible, then show that T is invertible.	4
	c)	Define the range and rank of a linear transformation T. If V is finite dimensional vector space over F, then show that $T \in A(V)$ is regular if and only if T maps V onto V.	6
6.	a)	Let $T \in A(V)$. Prove that the non-zero characteristic vectors belonging to distinct characteristic roots are linearly independent.	6
	b)	Let V be the set of all polynomials in x of degree 3 or less over F. On V, let T $$	
		be the transformation given by $(\alpha_0 + \alpha_1 x + \alpha_2 x^2 + \alpha_3 x^3)T = \alpha_0 + \alpha_1(1 + x) + \alpha_2 x^2 + \alpha_3 x^3)T = \alpha_0 + \alpha_1(1 + x) + \alpha_2 x^2 + \alpha_3 x^3)T = \alpha_0 + \alpha_1(1 + x) + \alpha_2 x^2 + \alpha_3 x^3)T = \alpha_0 + \alpha_1(1 + x) + \alpha_2 x^2 + \alpha_3 x^3)T = \alpha_0 + \alpha_1(1 + x) + \alpha_2 x^2 + \alpha_3 x^3)T = \alpha_0 + \alpha_1(1 + x) + \alpha_2 x^2 + \alpha_3 x^3)T = \alpha_0 + \alpha_1(1 + x) + \alpha_2 x^3 + \alpha_3 x^3)T = \alpha_0 + \alpha_1(1 + \alpha_2 x^3)T = \alpha_0 + \alpha_$	
		$\alpha_2(1+x)^2 + \alpha_3(1+x)^3$.	
		Compute the matrix of T in the basis	
		i) 1, x, x ² , x ³	
		ii) 1, 1 + x, 1 + x^2 , 1 + x^3 .	4

 $u = u_0 T^k$ for some $u_0 \in V_1$.

- c) If V is n-dimensional over F and if $T \in A(V)$ has matrix $M_1(T)$ in the basis $v_1, v_2, ..., v_n$ and the matrix $M_2(T)$ in the basis $w_1, w_2, ..., w_n$ of V over F, then prove that there exists $S \in A(V)$ defined as $v_i S = w_i$, 1 < i < n; such that $M_2(T) = M(S) \cdot M_1(T) \cdot (M(S))^{-1}$.
- 7. a) If the matrix A ∈ F_n has all its characteristic roots in F, then show that there is a matrix C ∈ F_n such that CAC⁻¹ is a triangular matrix.
 6
 b) If V is n-dimensional over F and if T ∈ A (V) has all its characteristic roots in F, then prove that T satisfies a polynomial of degree n over F.
 c) Define a nilpotent transformation. Let T ∈ A (V) and V₁ be an n₁-dimensional subspace of an n-dimensional vector space V spanned by {v, vT, ..., vT^{n₁-1}}, where v ≠ 0. If u ∈ V₁ is such that uT^{n₁-k} = 0, 0 < k ≤ n₁, then show that
- 8. a) Define the Jordan Cannonical form of a matrix. Find all possible Jordan forms for all 8×8 matrices having $x^2(x 1)^3$ as minimal polynomial. 6
 - b) Define a normal transformation. If λ is a characteristic root of the normal transformation N and if vN = λ v then show that vN^{*} = $\overline{\lambda}$ v. 6
 - c) Define rank, signature and real quadratic form. Determine the rank and signature of the following real quadratic form $x_1^2 + 2x_1x_2 + x_2^2$.

6

5