II Semester M.Sc. Degree Examination, June/July 2014 (RNS) (2011-12 \& Onwards) MATHEMATICS

 M-201 : Algebra - II

 M-201 : Algebra - II}

Time : 3 Hours

Instructions: i) Answerany five (5) full questions choosing atleast two from each Part.

ii) All questions carry equal marks.
PART - A

1. a) Define the degree of an extension K of a field F. If L is a finite extension of K and K is a finite extension of F, then prove that L is a finite extension of F. Moreover, prove that $[L: F]=[L ; K][K: F]$.
b) Let K be an extension of a field F and $a, b \in K$ be algebraic over F of degree m and n respectively. If m and n are relatively prime, prove that $F(a, b)$ is of degree $m n$ over F.
c) Show that $Q(\sqrt{2}+\sqrt{3})$ is an algebraic extension of Q of degree 4 .
2. a) Prove that a polynomial of degree n over a field F can have atmost n roots in any extension field K . Is the result true when K is not a field ? Explain.
b) Define a splitting field of a polynomial $f(x) \in F[x]$. Prove that any two splitting fields E and E^{\prime} of the polynomials $f(x) \in F[x]$ and $f^{\prime}(t) \in F^{\prime}[t]$, respectively are isomorphic by an isomorphism ϕ with the property that $\alpha \phi=\alpha Z=\alpha^{\prime}$ for $\alpha \in F$, where $Z: F \rightarrow F^{\prime}$ is an isomorphism. Hence, deduce that any two splitting fields of the same polynomial over a given field F are isomorphic by an isomorphism leaving every element of F fixed.
3. a) Prove or disprove: "A regular septagon is constructible".
b) Prove that any finite extension of a field F of characteristic zero, is a simple extension.
c) If the number α satisfies an irreducible polynomial of degree k, over the field of rationals and k is not a power of 2 , then show that α is not a constructible number.
4. a) If K is finite extension of F, then prove that $G(K, F)$ is a finite group and its order $o(G(K, F))$ satisfies the condition $o(G(K, F)) \leq[K: F]$.
b) Let K be a finite Galois extension of a field F and let T be an intermediate field of K and F. Prove that (i) T is a normal extension of F if and only if $G(K, T)$ is a normal subgroup of $G(K, F)$. (ii) When T is a normal extension of F, then $G(T, F)$ is isomorphic to $G(K, F) / G(K, T)$.

PART-B
5. a) If V is an n-dimensional vector space over F, then show that for a given T in $A(V)$ there exists a non-trivial polynomial $q(x) \in F[x]$ of degree at most n^{2}, such that $\mathrm{q}(\mathrm{T})=0$.
b) If V is a finite dimensional vector space over F and if $\mathrm{T} \in \mathrm{A}(\mathrm{V})$ is right invertible, then show that T is invertible.
c) Define the range and rank of a linear transformation T . If V is finite dimensional vector space over F, then show that $T \in A(V)$ is regular if and only if T maps V onto V.
6. a) Let $T \in A(V)$. Prove that the non-zero characteristic vectors belonging to distinct characteristic roots are linearly independent.
b) Let V be the set of all polynomials in x of degree 3 or less over F . On V , let T be the transformation given by $\left(\alpha_{0}+\alpha_{1} x+\alpha_{2} x^{2}+\alpha_{3} x^{3}\right) T=\alpha_{0}+\alpha_{1}(1+x)+$ $\alpha_{2}(1+x)^{2}+\alpha_{3}(1+x)^{3}$.

Compute the matrix of T in the basis
i) $1, x, x^{2}, x^{3}$
ii) $1,1+x, 1+x^{2}, 1+x^{3}$.
c) If V is n-dimensional over F and if $T \in A(V)$ has matrix $M_{1}(T)$ in the basis $v_{1}, v_{2}, \ldots, v_{n}$ and the matrix $M_{2}(T)$ in the basis $w_{1}, w_{2}, \ldots, w_{n}$ of V over F, then prove that there exists $S \in A(V)$ defined as $v_{i} S=w_{i}, 1<i<n$; such that $M_{2}(T)=M(S) \cdot M_{1}(T) \cdot(M(S))^{-1}$.
7. a) If the matrix $A \in F_{n}$ has all its characteristic roots in F, then show that there is a matrix $C \in F_{n}$ such that $C A C^{-1}$ is a triangular matrix.
b) If V is n-dimensional over F and if $T \in A(V)$ has all its characteristic roots in F, then prove that T satisfies a polynomial of degree n over F.
c) Define a nilpotent transformation. Let $T \in A(V)$ and V_{1} be an n_{1}-dimensional subspace of an n-dimensional vector space V spanned by $\left\{\mathrm{v}, \mathrm{v} T, \ldots, \mathrm{v}^{\mathrm{n}_{1}-1}\right\}$, where $v \neq 0$. If $u \in V_{1}$ is such that $u T^{n_{1}-k}=0,0<k \leq n_{1}$, then show that $u=u_{0} T^{k}$ for some $u_{0} \in V_{1}$.
8. a) Define the Jordan Cannonical form of a matrix. Find all possible Jordan forms for all 8×8 matrices having $x^{2}(x-1)^{3}$ as minimal polynomial.

6
b) Define a normal transformation. If λ is a characteristic root of the normal transformation N and if $\mathrm{vN}=\lambda \mathrm{v}$ then show that $\mathrm{v} \mathrm{N}^{*}=\bar{\lambda} \mathrm{v}$.
c) Define rank, signature and real quadratic form. Determine the rank and signature of the following real quadratic form $x_{1}^{2}+2 x_{1} x_{2}+x_{2}^{2}$.

